

Comparison of PEEK, PPS, and PES Polymers Injection Moulded Grades

Polyetheretherketone (PEEK), polyphenylene sulfide (PPS), and polyethersulfone (PES) are all high-performance engineering thermoplastics.

Below, we compare their **short-term mechanical and physical properties** for injection moulded **unfilled (neat resin)** grades.

Key properties include strength, stiffness, impact resistance, and temperature capabilities, as well as chemical, radiation, wear, creep, and fatigue performance. ISO standard data (e.g. ISO 527 tensile tests, ISO 179/180 impact tests, ISO 75 heat deflection temperatures) are referenced where available.

	Semi-Crystalline Polymers		Amorphous Polymers
Material Characteristics	Polyetheretherketone PEEK (unfilled)	Polyphenylene sulfide PPS (unfilled)	Polyethersulfone PES (unfilled)
Tensile Strength (ISO 527)	90–100 MPa ¹ (yield) – exhibits ductile yield around 5% strain ² .	$65-80 \text{MPa}^{1}$ (no distinct yield; breaks at ~1–2% strain, very low elongation[3]).	\sim 85 MPa (yield at \sim 7% strain – moderately ductile ⁴ .
Tensile Modulus (ISO 527)	~3.6 GPa ¹ (high stiffness).	~3.8 GPa ¹ (stiff, despite brittleness).	\sim 2.65 GPa $^{\frac{4}{}}$ (lower stiffness due to amorphous nature).
	20–30% (high ductility) ³	~1–2% ³	~6–7% ⁴
Elongation at Break	Unfilled PEEK is tough and can deform significantly before fracture.	Unfilled PPS is extremely brittle -little plastic deformation.	Intermediate ductility – more than PPS, less than PEEK.

Impact Strength (Notched)	~8 kJ/m² (Izod/Charpy, notched) ¹ High impact resistance; Unnotched: no break in Charpy tests ³ .	~3 kJ/m² (notched)¹ – very brittle (notched specimens tend to break easily); Unnotched: often still breaks due to low toughness³.	~7 kJ/m² (notched Charpy) – fairly impact resistant. Unnotched: no break (PES is very tough when not pre-notched) ⁴ .
Glass Transition (Tg)	143°C ⁵ . Semi-crystalline PEEK retains stiffness beyond Tg thanks to crystallinity.	90°C ⁶ . Low Tg means PPS' amorphous regions soften at modest temperatures. (PPS can undergo some crosslinking upon first heat, partially mitigating softening).	225 °C ⁶ . High Tg (amorphous polymer); maintains rigidity until very high temperatures. No melting point (amorphous).
Melting Point (Tm)	343 °C ⁶ . Signifies processing temperature ~370 °C and high thermal stability of crystalline phase.	285 °C ⁶ . PPS processing ~300 °C; can undergo slight crosslink at high T which raises thermal stability further.	N/A (Amorphous – no Tm). Thermal decomposition onset ~>500 °C ⁷
Heat Deflection Temp (HDT @1.8 MPa)	~160°C (unannealed, ISO 75) 5 PEEK's HDT is highest among these (due to high crystallinity and Tg).	~110–130 °C (depending on grade; can improve if post-cured) ¹ . Lower HDT due to low Tg, though high crystallinity gives shape stability up to ~200 °C in absence of load.	~205 °C (ISO 75) ⁴ . PES's HDT ~ near its Tg, indicating excellent short-term high-temperature usage (no crystalline phase, so softening begins at Tg).
Continuous Use Temp (approx.)	~250–260 °C (UL RTI ~260 °C). PEEK can continuously operate at extremely high temperatures (with minimal	~180–200 °C ¹ . Beyond ~200 °C, PPS may oxidatively degrade or embrittle (though it doesn't melt until 280 °C) ¹ .	~180–190 °C (UL RTI ~190 °C) ⁴ . High Tg grants PES excellent continuous heat resistance in air until

property loss even after ~200 °C, after which it softens. 10,000 h)⁵. Chemical resistance and The component demands the *highest combination* of dimensional stability are For applications needing temperature capability (over paramount in the ~150transparency or Use when . . . 200 °C), mechanical load-200°C range, and where hydrolysis resistance at bearing (especially longcost or ease of high temperatures term or cyclical), and processing (PPS moulds toughness. at lower temperature than PEEK) is a factor.

References

- [1] The Difference Between PEEK and PPS, Hony Plastics "the difference between PEEK and PPS", 23/06/2025
- [2] Victrex Material Properties Guide 01/04/2020
- [3] Ultrason® E 2010 Datasheet sushengpolymer.com
- [4] PEEK vs. PES MakeltFrom.com
- [5] PEEK vs PPS: Which Do You Need? Advanced EMC
- [6] What Is the Difference Between PES and PPS? A Detailed Guide, www.Plastic-Pellet.com
- [7] Radiation resistant Plastics, www.EnsingerPlastics.com